Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Year range
1.
Front Physiol ; 11: 612268, 2020.
Article in English | MEDLINE | ID: covidwho-1063352

ABSTRACT

The World Health Organization declared the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-associated disease (coronavirus disease 2019 - COVID-19) as a pandemic in March 2020. COVID-19 is characterized by cytokine storm, acute respiratory distress syndrome (ARDS), and systemic inflammation-related pathology and already kills more than 1.5 million of people worldwide. Since aged and obese COVID-19 patients exhibit an enhanced inflammatory status, they represent a high-risk cluster for rapidly progressive clinical deterioration. These individuals present comorbid disorders and immunosenescence that may promote viral-induced cytokine storm and expression of molecules acting as virus receptor as angiotensin I converting enzyme 2 (ACE2) and CD26 (dipeptidyl-peptidase 4), resulting in respiratory failure and increased morbidity and mortality. A better knowledge of SARS-CoV-2 infection in inflammatory-associated high-risk population is essential in order to develop the therapies needed to combat or prevent severe COVID-19. Here, we review the pathogenesis and clinical implications of inflammatory disorders and disease markers associated to senescence in COVID-19 patients and the emerging evidence to argue that a high intake of polyphenols may have a protective effect on SARS-CoV-2 illness severity.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.29.068486

ABSTRACT

The dependence of the host on the interaction of hundreds of extracellular proteins with the cell surface glycosaminoglycan heparan sulphate (HS) for the regulation of homeostasis is exploited by many microbial pathogens as a means of adherence and invasion. The closely related polysaccharide heparin, the widely used anticoagulant drug, which is structurally similar to HS and is a common experimental proxy, can be expected to mimic the properties of HS. Heparin prevents infection by a range of viruses when added exogenously, including S-associated coronavirus strain HSR1 and inhibits cellular invasion by SARS-CoV-2. We have previously demonstrated that unfractionated heparin binds to the Spike (S1) protein receptor binding domain, induces a conformational change and have reported the structural features of heparin on which this interaction depends. Furthermore, we have demonstrated that enoxaparin, a low molecular weight clinical anticoagulant, also binds the S1 RBD protein and induces conformational change. Here we expand upon these studies, to a wide range of low molecular weight heparins and demonstrate that they induce a variety of conformational changes in the SARS-CoV-2 RBD. These findings may have further implications for the rapid development of a first-line therapeutic by repurposing low molecular weight heparins, as well as for next-generation, tailor-made, GAG-based antiviral agents, against SARS-CoV-2 and other members of the Coronaviridae.

3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.29.068767

ABSTRACT

The glycosaminoglycan (GAG) class of polysaccharides are utilised by a plethora of microbial pathogens as receptors for adherence and invasion. The GAG heparin prevents infection by a range of viruses when added exogenously, including the S-associated coronavirus strain HSR1 and more recently we have demonstrated that heparin can block cellular invasion by SARS-CoV-2. Heparin has found widespread clinical use as anticoagulant drug and this molecule is routinely used as a proxy for the GAG, heparan sulphate (HS), a structural analogue located on the cell surface, which is a known receptor for viral invasion. Previous work has demonstrated that unfractionated heparin and low molecular weight heparins binds to the Spike (S1) protein receptor binding domain, inducing distinct conformational change and we have further explored the structural features of heparin with regard to these interactions. In this article, previous research is expanded to now include a broader range of GAG family members, including heparan sulphate. This research demonstrates that GAGs, other than those of heparin (or its derivatives), can also interact with the SARS-CoV-2 Spike S1 receptor binding domain and induce distinct conformational changes within this region. These findings pave the way for future research into next-generation, tailor-made, GAG-based antiviral agents, against SARS-CoV-2 and other members of the Coronaviridae.

4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.28.066761

ABSTRACT

The dependence of the host on the interaction of hundreds of extracellular proteins with the cell surface glycosaminoglycan heparan sulphate (HS) for the regulation of homeostasis is exploited by many microbial pathogens as a means of adherence and invasion. The closely related polysaccharide heparin, the widely used anticoagulant drug, which is structurally similar to HS and is a common experimental proxy, can be expected to mimic the properties of HS. Heparin prevents infection by a range of viruses if added exogenously, including S-associated coronavirus strain HSR1. Heparin prevents infection by a range of viruses if added exogenously, including S-associated coronavirus strain HSR1. Here, we show that the addition of heparin to Vero cells between 6.25 - 200 g.ml-1, which spans the concentration of heparin in therapeutic use, and inhibits invasion by SARS-CoV-2 at between 44 and 80%. We also demonstrate that heparin binds to the Spike (S1) protein receptor binding domain and induces a conformational change, illustrated by surface plasmon resonance and circular dichroism spectroscopy studies. The structural features of heparin on which this interaction depends were investigated using a library of heparin derivatives and size-defined fragments. Binding is more strongly dependent on the presence of 2-O or 6-O sulphation, and the consequent conformational consequences in the heparin structure, than on N-sulphation. A hexasaccharide is required for conformational changes to be induced in the secondary structure that are comparable to those that arise from heparin binding. Enoxaparin, a low molecular weight clinical anticoagulant, also binds the S1 RBD protein and induces conformational change. These findings have implications for the rapid development of a first-line therapeutic by repurposing heparin as well as for next-generation, tailor-made, GAG-based antiviral agents against SARS-CoV-2 and other members of the Coronaviridae.

SELECTION OF CITATIONS
SEARCH DETAIL